Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Arch Pharm (Weinheim) ; : e2400029, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627294

RESUMO

Imatinib mesylate was the first representative BCR-ABL1 tyrosine kinase inhibitor (TKI) class for the treatment of chronic myeloid leukemia. Despite the revolution promoted by TKIs in the treatment of this pathology, a resistance mechanism occurs against all BCR-ABL1 inhibitors, necessitating a constant search for new therapeutic options. To develop new antimyeloproliferative substances, we applied a medicinal chemistry tool known as molecular hybridization to design 25 new substances. These compounds were synthesized and biologically evaluated against K562 cells, which express BCR-ABL1, a constitutively active tyrosine kinase enzyme, as well as in WSS-1 cells (healthy cells). The new compounds are conjugated hybrids that contain phenylamino-pyrimidine-pyridine (PAPP) and an isatin backbone, which are the main pharmacophoric fragments of imatinib and sunitinib, respectively. A spiro-oxindole nucleus was used as a linker because it occurs in many compounds with antimyeloproliferative activity. Compounds 2a, 2b, 3c, 4c, and 4e showed promise, as they inhibited cell viability by between 45% and 61% at a concentration of 10 µM. The CC50 of the most active substances was determined to be within 0.8-9.8 µM.

2.
Arch Pharm (Weinheim) ; : e2400059, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627301

RESUMO

Chagas disease is a neglected tropical parasitic disease caused by the protozoan Trypanosoma cruzi. Worldwide, an estimated 8 million people are infected with T. cruzi, causing more than 10,000 deaths per year. Currently, only two drugs, nifurtimox and benznidazole (BNZ), are approved for its treatment. However, both are ineffective during the chronic phase, show toxicity, and produce serious side effects. This work aimed to obtain and evaluate novel 2-nitroimidazole-N-acylhydrazone derivatives analogous to BNZ. The design of these compounds used the two important pharmacophoric subunits of the BNZ prototype, the 2-nitroimidazole nucleus and the benzene ring, and the bioisosterism among the amide group of BNZ and N-acylhydrazone. The 27 compounds were obtained by a three-step route in 57%-98% yields. The biological results demonstrated the potential of this new class of compounds, since eight compounds were potent and selective in the in vitro assay against T. cruzi amastigotes and trypomastigotes using a drug-susceptible strain of T. cruzi (Tulahuen) (IC50 = 4.3-6.25 µM) and proved to be highly selective with low cytotoxicity on L929 cells. The type I nitroreductase (TcNTR) assay suggests that the new compounds may act as substrates for this enzyme.

3.
Eur J Med Chem ; 267: 116163, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38290351

RESUMO

The World Health Organization (WHO) estimated that there were 247 million malaria cases in 2021 worldwide, representing an increase in 2 million cases compared to 2020. The urgent need for the development of new antimalarials is underscored by specific criteria, including the requirement of new modes of action that avoid cross-drug resistance, the ability to provide single-dose cures, and efficacy against both assexual and sexual blood stages. Motivated by the promising results obtained from our research group with [1,2,4]triazolo[1,5-a]pyrimidine and pyrazolo[1,5-a]pyrimidine derivatives, we selected these molecular scaffolds as the foundation for designing two new series of piperaquine analogs as potential antimalarial candidates. The initial series of hybrids was designed by substituting one quinolinic ring of piperaquine with the 1,2,4-triazolo[1,5-a]pyrimidine or pyrazolo[1,5-a]pyrimidine nucleus. To connect the heterocyclic systems, spacers with 3, 4, or 7 methylene carbons were introduced at the 4 position of the quinoline. In the second series, we used piperazine as a spacer to link the 1,2,4-triazolo[1,5-a]pyrimidine or pyrazolo[1,5-a]pyrimidine group to the quinoline core, effectively merging both pharmacophoric groups via a rigid spacer. Our research efforts yielded promising compounds characterized by low cytotoxicity and selectivity indices exceeding 1570. These compounds displayed potent in vitro inhibitory activity in the low nanomolar range against the erythrocytic form of the parasite, encompassing both susceptible and resistant strains. Notably, these compounds did not show cross-resistance with either chloroquine or established P. falciparum inhibitors. Even though they share a pyrazolo- or triazolo-pyrimidine core, enzymatic inhibition assays revealed that these compounds had minimal inhibitory effects on PfDHODH, indicating a distinct mode of action unrelated to targeting this enzyme. We further assessed the compounds' potential to interfere with gametocyte and ookinete infectivity using mature P. falciparum gametocytes cultured in vitro. Four compounds demonstrated significant gametocyte inhibition ranging from 58 % to 86 %, suggesting potential transmission blocking activity. Finally, we evaluated the druggability of these new compounds using in silico methods, and the results indicated that these analogs had favorable physicochemical and ADME (absorption, distribution, metabolism, and excretion) properties. In summary, our research has successfully identified and characterized new piperaquine analogs based on [1,2,4]triazolo[1,5-a]pyrimidine and pyrazolo[1,5-a]pyrimidine scaffolds and has demonstrated their potential as promising candidates for the development of antimalarial drugs with distinct mechanisms of action, considerable selectivity, and P. falciparum transmission blocking activity.


Assuntos
Antimaláricos , Malária Falciparum , Piperazinas , Quinolinas , Humanos , Antimaláricos/farmacologia , Antimaláricos/química , Plasmodium falciparum , Quinolinas/química , Malária Falciparum/tratamento farmacológico , Pirimidinas/química
4.
Arch Pharm (Weinheim) ; 357(2): e2300560, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38032154

RESUMO

Tuberculosis (TB) disease, caused by Mycobacterium tuberculosis (Mtb) is the leading cause of death among people with human immunodeficiency virus (HIV) infection. No dual-target drug is currently being used to simultaneously treat both infections. This work aimed to obtain new multitarget HIV-TB agents, with the goal of optimizing treatments and preventing this coinfection. These compounds incorporate the structural features of azaaurones as anti-Mtb and zidovudine (AZT) as the antiretroviral moiety. The azaaurone scaffold displayed submicromolar activities against Mtb, and AZT is a potent antiretroviral drug. Six derivatives were synthetically generated, and five were evaluated against both infective agents. Evaluations of anti-HIV activity were carried out in HIV-1-infected MT-4 cells and on endogenous HIV-1 reverse transcriptase (RT) activity. The H37Rv strain was used for anti-Mtb assessments. Most compounds displayed potent antitubercular and moderate anti-HIV activity. (E)-12 exhibited a promising multitarget profile with an MIC90 of 2.82 µM and an IC50 of 1.98 µM in HIV-1-infected T lymphocyte cells, with an 84% inhibition of RT activity. Therefore, (E)-12 could be the first promising compound from a family of multitarget agents used to treat HIV-TB coinfection. In addition, the compound could offer a prototype for the development of new strategies in scientific research to treat this global health issue.


Assuntos
Benzofuranos , Coinfecção , Infecções por HIV , HIV-1 , Mycobacterium tuberculosis , Tuberculose , Humanos , Coinfecção/tratamento farmacológico , Relação Estrutura-Atividade , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Antituberculosos/farmacologia , Antituberculosos/química , Infecções por HIV/tratamento farmacológico , Antirretrovirais/farmacologia
5.
Molecules ; 28(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38005183

RESUMO

Chagas disease (CD), which is caused by Trypanosoma cruzi and was discovered more than 100 years ago, remains the leading cause of death from parasitic diseases in the Americas. As a curative treatment is only available for the acute phase of CD, the search for new therapeutic options is urgent. In this study, nitroazole and azole compounds were synthesized and underwent molecular modeling, anti-T. cruzi evaluations and nitroreductase enzymatic assays. The compounds were designed as possible inhibitors of ergosterol biosynthesis and/or as substrates of nitroreductase enzymes. The in vitro evaluation against T. cruzi clearly showed that nitrotriazole compounds are significantly more potent than nitroimidazoles and triazoles. When their carbonyls were reduced to hydroxyl groups, the compounds showed a significant increase in activity. In addition, these substances showed potential for action via nitroreductase activation, as the substances were metabolized at higher rates than benznidazole (BZN), a reference drug against CD. Among the compounds, 1-(2,4-difluorophenyl)-2-(3-nitro-1H-1,2,4-triazol-1-yl)ethanol (8) is the most potent and selective of the series, with an IC50 of 0.39 µM and selectivity index of 3077; compared to BZN, 8 is 4-fold more potent and 2-fold more selective. Moreover, this compound was not mutagenic at any of the concentrations evaluated, exhibited a favorable in silico ADMET profile and showed a low potential for hepatotoxicity, as evidenced by the high values of CC50 in HepG2 cells. Furthermore, compared to BZN, derivative 8 showed a higher rate of conversion by nitroreductase and was metabolized three times more quickly when both compounds were tested at a concentration of 50 µM. The results obtained by the enzymatic evaluation and molecular docking studies suggest that, as planned, nitroazole derivatives may utilize the nitroreductase metabolism pathway as their main mechanism of action against Trypanosoma cruzi. In summary, we have successfully identified and characterized new nitrotriazole analogs, demonstrating their potential as promising candidates for the development of Chagas disease drug candidates that function via nitroreductase activation, are considerably selective and show no mutagenic potential.


Assuntos
Doença de Chagas , Nitroimidazóis , Tripanossomicidas , Trypanosoma cruzi , Humanos , Trypanosoma cruzi/metabolismo , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Mutagênicos/farmacologia , Tripanossomicidas/farmacologia , Doença de Chagas/tratamento farmacológico , Nitroimidazóis/farmacologia , Nitroimidazóis/uso terapêutico , Triazóis/química , Nitrorredutases/metabolismo
6.
J Bioenerg Biomembr ; 55(6): 409-421, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37919636

RESUMO

Current treatment of Chagas disease (CD) is based on two substances, nifurtimox (NT) and benzonidazole (BZ), both considered unsatisfactory mainly due to their low activities and high toxicity profile. One of the main challenges faced in CD management concerns the identification of new drugs active in the acute and chronic phases and with good pharmacokinetic profiles. In this work, we studied the bioactivity of twenty 2-(1H-pyrazol-1-yl)-1,3,4-thiadiazole derivatives against Trypanosoma cruzi epimastigotes and trypomastigotes. We identified seven derivatives with promising activity against epimastigote forms with IC50 values ranging from 6 µM to 44 µM. Most of the compounds showed no significant toxicity against murine macrophages. Our initial investigation on the mechanism of action indicates that this series of compounds may exert their anti-parasitic effect, inducing cell membrane damage. The results in trypomastigotes showed that one derivative, PDAN 78, satisfactorily inhibited metabolic alteration at all concentrations. Moreover, we used molecular modeling to understand how tridimensional and structural aspects might influence the observed bioactivities. Finally, we also used in silico approaches to assess the potential pharmacokinetic and toxicological properties of the most active compounds. Our initial results indicate that this molecular scaffold might be a valuable prototype for novel and safe trypanocidal compounds.


Assuntos
Doença de Chagas , Tiadiazóis , Tripanossomicidas , Trypanosoma cruzi , Animais , Camundongos , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Doença de Chagas/tratamento farmacológico , Tiadiazóis/farmacologia , Tiadiazóis/uso terapêutico
7.
Eur J Pharmacol ; 957: 175999, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37619787

RESUMO

Stimulation of the P2X7 receptor by extracellular adenosine 5'-triphosphate induces a series of responses in the organism, exceptionally protein cascades related to the proinflammatory process. This has made P2X7 a target for research on inflammatory diseases such as rheumatoid arthritis. Thus, the incessant search for new prototypes that aim to antagonize the action of P2X7 has been remarkable in recent decades, a factor that has already led to numerous clinical studies in humans. In this review, we present the key molecules developed over the years with potential inhibition of P2X7 and inflammation. In addition, an update with newly developed chemical classes with promising activity and results in clinical studies for human pathologies focusing on P2X7 inhibition.


Assuntos
Artrite Reumatoide , Antagonistas do Receptor Purinérgico P2X , Humanos , Antagonistas do Receptor Purinérgico P2X/farmacologia , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Química Farmacêutica , Trifosfato de Adenosina , Inflamação/tratamento farmacológico
8.
Pharmaceuticals (Basel) ; 16(6)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37375730

RESUMO

BACKGROUND: Statins present a plethora of pleiotropic effects including anti-inflammatory and antimicrobial responses. A,α-difluorophenylacetamides, analogs of diclofenac, are potent pre-clinical anti-inflammatory non-steroidal drugs. Molecular hybridization based on the combination of pharmacophoric moieties has emerged as a strategy for the development of new candidates aiming to obtain multitarget ligands. METHODS: Considering the anti-inflammatory activity of phenylacetamides and the potential microbicidal action of statins against obligate intracellular parasites, the objective of this work was to synthesize eight new hybrid compounds of α,α-difluorophenylacetamides with the moiety of statins and assess their phenotypic activity against in vitro models of Plasmodium falciparum and Trypanosoma cruzi infection besides exploring their genotoxicity safety profile. RESULTS: None of the sodium salt compounds presented antiparasitic activity and two acetated compounds displayed mild anti-P. falciparum effect. Against T. cruzi, the acetate halogenated hybrids showed moderate effect against both parasite forms relevant for human infection. Despite the considerable trypanosomicidal activity, the brominated compound revealed a genotoxic profile impairing future in vivo testing. CONCLUSIONS: However, the chlorinated derivative was the most promising compound with chemical and biological profitable characteristics, without presenting genotoxicity in vitro, being eligible for further in vivo experiments.

9.
Acta Trop ; 242: 106924, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37037291

RESUMO

Atorvastatin (AVA) is a third-generation statin with several pleiotropic effects, considered the last synthetic pharmaceutical blockbuster. Recently, our group described the effects of AVA on DNA damage prevention and against Trypanosoma cruzi infection. In this study, our aim was to evaluate the efficacy, safety, and in silico pharmacokinetic profile of four hybrids of aminoquinolines with AVA 4a-d against T. cruzi using in vitro and in silico models. These synthetic compounds were designed by hybridization of the pentapyrrolic moiety of AVA with the aminoquinolinic unit of chloroquine or primaquine. Pharmacokinetics (ADME) and toxicity parameters were predicted by SwissADME, admetSAR and LAZAR in silico algorithms. The trypanocidal activity of AVA-quinoline hybrids were evaluated in vitro against amastigotes and trypomastigotes of T. cruzi, from Y (Tc II) and Tulahuen (Tc VI) strains. In vitro cardiocytotoxicity was assessed using primary cultures of mouse embryonic cardiac cells and in vitro hepatocytotoxicity on bidimensional and 3D-cultured HepG2 cells. Genotoxicity was evaluated by Ames test and micronucleus assay. Despite the overall good in silico ADMET profile, all tested compounds were predicted to be hepatotoxic. All hybrid derivatives presented high trypanocidal activity, against both trypomastigote and intracellular forms of T. cruzi, presenting EC50's lower than 1 µM besides superior selectivity than the reference drug, without evidences of cardiotoxicity in vitro. The compounds 4a and 4b presented a time-dependent toxicity in monolayer culture of HepG2 but no detectable toxic effects in their spheroids, opposing to the in silico prediction. We can conclude that the AVA-aminoquinoline hybrids presented a hit profile as antiparasitic agents in synthetic pharmaceutical innovation platforms.


Assuntos
Antimaláricos , Doença de Chagas , Tripanossomicidas , Trypanosoma cruzi , Animais , Camundongos , Atorvastatina/farmacologia , Atorvastatina/uso terapêutico , Pirróis/farmacologia , Pirróis/uso terapêutico , Doença de Chagas/parasitologia , Aminoquinolinas/farmacologia , Antimaláricos/farmacologia , Dano ao DNA , Preparações Farmacêuticas , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico
10.
Molecules ; 28(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37110574

RESUMO

The human immunodeficiency virus (HIV) produces the pathologic basis of acquired immunodeficiency syndrome (AIDS). An increase in the viral load in the body leads to a decline in the number of T lymphocytes, compromising the patient's immune system. Some opportunistic diseases may result, such as tuberculosis (TB), which is the most common in seropositive patients. Long-term treatment is required for HIV-TB coinfection, and cocktails of drugs for both diseases are used concomitantly. The most challenging aspects of treatment are the occurrence of drug interactions, overlapping toxicity, no adherence to treatment and cases of resistance. Recent approaches have involved using molecules that can act synergistically on two or more distinct targets. The development of multitarget molecules could overcome the disadvantages of the therapies used to treat HIV-TB coinfection. This report is the first review on using molecules with activities against HIV and Mycobacterium tuberculosis (MTB) for molecular hybridization and multitarget strategies. Here, we discuss the importance and development of multiple targets as a means of improving adherence to therapy in cases of the coexistence of these pathologies. In this context, several studies on the development of structural entities to treat HIV-TB simultaneously are discussed.


Assuntos
Coinfecção , Infecções por HIV , Mycobacterium tuberculosis , Tuberculose , Humanos , HIV , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Coinfecção/tratamento farmacológico , Coinfecção/epidemiologia , Tuberculose/complicações , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico
11.
J Biomol Struct Dyn ; 41(10): 4368-4382, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35475501

RESUMO

There are only two drugs for the treatment of Chagas disease, namely, nifurtimox and benznidazole, that can cause several adverse effects. Despite the effectiveness of these drugs in the disease's acute phase, they are not recognized as curative in the chronic phase, establishing the need for more effective treatment in all stages of the disease. Cruzain is an enzyme that plays a vital role in the life cycle of the etiologic agent, the protozoan Trypanosoma cruzi, being relevant as a therapeutic target in the planning of new drugs. Using molecular docking and dynamics simulations, we have investigated the structural and dynamic factors that can be involved in the enzyme inhibition process at the atomic-molecular level by benzimidazole compounds that are potent cruzain inhibitors with in vitro trypanocidal activity. The study suggests that these inhibitors bind cruzain through steric and hydrogen bonding interactions without altering its secondary structure content and protein compaction. Besides, we observed that these inhibitors decrease the correlation of movements between Cα-atoms of cruzain, increasing the number of atomic communities, mainly in the α-helix that presents the catalytic Cys25 residue. As expected, we also observed a correlation between the inhibitory activity of each inhibitor and their respective binding-free energies, reinforcing that the affinity of the complexes seems to be a relevant factor for enzymatic inhibition. Hence, the results presented in this work contribute to a better understanding of the cruzain enzyme inhibition mechanism through competitive and non-covalent inhibitors.Communicated by Ramaswamy H. Sarma.


Assuntos
Tripanossomicidas , Trypanosoma cruzi , Simulação de Acoplamento Molecular , Cisteína Endopeptidases/química , Proteínas de Protozoários , Benzimidazóis/farmacologia , Benzimidazóis/metabolismo , Tripanossomicidas/farmacologia , Tripanossomicidas/química , Inibidores de Cisteína Proteinase/química
12.
Molecules ; 27(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36500608

RESUMO

The concept of polypharmacology embraces multiple drugs combined in a therapeutic regimen (drug combination or cocktail), fixed dose combinations (FDCs), and a single drug that binds to different targets (multi-target drug). A polypharmacology approach is widely applied in the treatment of acquired immunodeficiency syndrome (AIDS), providing life-saving therapies for millions of people living with HIV. Despite the success in viral load suppression and patient survival of combined antiretroviral therapy (cART), the development of new drugs has become imperative, owing to the emergence of resistant strains and poor adherence to cART. 3'-azido-2',3'-dideoxythymidine, also known as azidothymidine or zidovudine (AZT), is a widely applied starting scaffold in the search for new compounds, due to its good antiretroviral activity. Through the medicinal chemistry tool of molecular hybridization, AZT has been included in the structure of several compounds allowing for the development of multi-target-directed ligands (MTDLs) as antiretrovirals. This review aims to systematically explore and critically discuss AZT-based compounds as potential MTDLs for the treatment of AIDS. The review findings allowed us to conclude that: (i) AZT hybrids are still worth exploring, as they may provide highly active compounds targeting different steps of the HIV-1 replication cycle; (ii) AZT is a good starting point for the preparation of co-drugs with enhanced cell permeability.


Assuntos
Síndrome de Imunodeficiência Adquirida , Fármacos Anti-HIV , HIV-1 , Humanos , Zidovudina/farmacologia , Zidovudina/uso terapêutico , Síndrome de Imunodeficiência Adquirida/tratamento farmacológico , Farmacóforo , Carga Viral , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico
13.
Front Pharmacol ; 13: 935588, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35899113

RESUMO

Among the ten different adenylyl cyclase isoforms, studies with knockout animals indicate that inhibition of AC1 can relieve pain and reduce behaviors linked to opioid dependence. We previously identified ST034307 as a selective inhibitor of AC1. The development of an AC1-selective inhibitor now provides the opportunity to further study the therapeutic potential of inhibiting this protein in pre-clinical animal models of pain and related adverse reactions. In the present study we have shown that ST034307 relives pain in mouse models of formalin-induced inflammatory pain, acid-induced visceral pain, and acid-depressed nesting. In addition, ST034307 did not cause analgesic tolerance after chronic dosing. We were unable to detect ST034307 in mouse brain following subcutaneous injections but showed a significant reduction in cAMP concentration in dorsal root ganglia of the animals. Considering the unprecedented selectivity of ST034307, we also report the predicted molecular interaction between ST034307 and AC1. Our results indicate that AC1 inhibitors represent a promising new class of analgesic agents that treat pain and do not result in tolerance or cause disruption of normal behavior in mice. In addition, we outline a unique binding site for ST034307 at the interface of the enzyme's catalytic domain.

14.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35337107

RESUMO

Imatinib (IMT) is the first-in-class BCR-ABL commercial tyrosine kinase inhibitor (TKI). However, the resistance and toxicity associated with the use of IMT highlight the importance of the search for new TKIs. In this context, heterocyclic systems, such as quinoline, which is present as a pharmacophore in the structure of the TKI inhibitor bosutinib (BST), have been widely applied. Thus, this work aimed to obtain new hybrids of imatinib containing quinoline moieties and evaluate them against K562 cells. The compounds were synthesized with a high purity degree. Among the produced molecules, the inhibitor 4-methyl-N3-(4-(pyridin-3-yl)pyrimidin-2-yl)-N1-(quinolin-4-yl)benzene-1,3-diamine (2g) showed a suitable reduction in cell viability, with a CC50 value of 0.9 µM (IMT, CC50 = 0.08 µM). Molecular docking results suggest that the interaction between the most active inhibitor 2g and the BCR-ABL1 enzyme occurs at the bosutinib binding site through a competitive inhibition mechanism. Despite being less potent and selective than IMT, 2g is a suitable prototype for use in the search for new drugs against chronic myeloid leukemia (CML), especially in patients with acquired resistance to IMT.

15.
Molecules ; 27(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35164014

RESUMO

Tyrosine kinase enzymes are among the primary molecular targets for the treatment of some human neoplasms, such as those in lung cancer and chronic myeloid leukemia. Mutations in the enzyme domain can cause resistance and new inhibitors capable of circumventing these mutations are highly desired. The objective of this work was to synthesize and evaluate the antiproliferative ability of ten new analogs that contain isatins and the phenylamino-pyrimidine pyridine (PAPP) skeleton, the main pharmacophore group of imatinib. The 1,2,3-triazole core was used as a spacer in the derivatives through a click chemistry reaction and gave good yields. All the analogs were tested against A549 and K562 cells, lung cancer and chronic myeloid leukemia (CML) cell lines, respectively. In A549 cells, the 3,3-difluorinated compound (3a), the 5-chloro-3,3-difluorinated compound (3c) and the 5-bromo-3,3-difluorinated compound (3d) showed IC50 values of 7.2, 6.4, and 7.3 µM, respectively, and were all more potent than imatinib (IC50 of 65.4 µM). In K562 cells, the 3,3-difluoro-5-methylated compound (3b) decreased cell viability to 57.5% and, at 10 µM, showed an IC50 value of 35.8 µM (imatinib, IC50 = 0.08 µM). The results suggest that 3a, 3c, and 3d can be used as prototypes for the development of more potent and selective derivatives against lung cancer.


Assuntos
Proliferação de Células/efeitos dos fármacos , Mesilato de Imatinib/farmacologia , Neoplasias/patologia , Células A549 , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Mesilato de Imatinib/análogos & derivados , Mesilato de Imatinib/uso terapêutico , Células K562 , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
16.
Artigo em Inglês | MEDLINE | ID: mdl-34923301

RESUMO

Isoniazid is a first-line drug for the treatment of tuberculosis, a bacterial disease caused by Mycobacterium tuberculosis. Its terminal amino group is highly reactive, leading to significant metabolic deactivation, drug interactions and hepatotoxicity. It is speculated that the activity of isoniazid derivatives is, in part, related to the cleavage of the protecting group. Therefore, this study aimed to evaluate the cleavage characteristics of previously developed isoniazid derivatives through kinetic studies by high-performance liquid chromatography with ultraviolet-diode array detectio to establish a comparison between the rates of the process and the respective activities against M. tuberculosis. Chromatographic separations were performed on an XDB C18 column coupled to an XDB C18 precolumn. The mobile phase consisted of ultrapure water and acetonitrile in gradient mode. The flow rate was 1.0 mL/min, the injection volume was 20 µL, and the detection wavelengths were 230 nm (derivatives and isatins) and 270 nm (isoniazid). Incubation of derivatives was carried out for 5 days in 10 mmol/L phosphate buffer solution (pH 3.0, 7.4, 8.0) or in fetal bovine serum at 37 °C. The incubation reduced the concentration of the derivatives and led to the formation of isoniazid in a first-order kinetic reaction. Isoniazid formation was logarithmically correlated with the minimum inhibitory concentration of the derivatives. The results showed that higher cleavage rates are associated with greater activities against M. tuberculosis, providing important information for the development of future generations of isoniazid derivatives and for screening drug candidates for the treatment of tuberculosis.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Hidrazinas/química , Isoniazida , Mycobacterium tuberculosis/efeitos dos fármacos , Isoniazida/análise , Isoniazida/química , Isoniazida/metabolismo , Isoniazida/farmacologia , Cinética , Limite de Detecção , Modelos Lineares , Testes de Sensibilidade Microbiana , Reprodutibilidade dos Testes
17.
Med Chem ; 18(6): 701-709, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34784878

RESUMO

BACKGROUND: Tuberculosis (TB) is one of the top ten causes of death worldwide, while Chagas disease (CD) is the parasitic disease that kills the largest number of people in the Americas. TB is the leading cause of death for patients with AIDS; it kills 1.5 million people and causes 10 million new cases every year. The lack of newly developed chemotherapeutic agents and insufficient access to health care services for a diagnosis increase the incidence of multidrug-resistant TB (MDRTB) cases. Although CD was identified in 1909, the chronic stages of the disease still lack adequate treatment. OBJECTIVE: The purpose of this work was to design and synthesize two new series of 2-nitroimidazole 5a-e and imidazooxazoles 6a-e with 1H-1,2,3-triazolil nucleus and evaluate their activities against Tc and Mycobacterium tuberculosis (Mtb). METHODS: Two series of five compounds were synthesized in a 3 or 4-step route in moderated yields, and their structures were confirmed by NMR spectral data analyses. The in vitro antitrypanosomal evaluation of products was carried out in an intracellular model using L929 cell line infected with trypomastigotes and amastigote forms of Tc of ß-galactosidase-transfected Tulahuen strain. Their antimycobacterial activity was evaluated against Mtb strain H37Rv. RESULTS: In general, 2-nitroimidazolic derivatives proved to be more potent in regard to antitrypanocidal and antimycobacterial activity. The non-cytotoxic 2-nitroimidazole derivative 5b was the most promising with a half maximum inhibitory concentration of 3.2 µM against Tc and a minimum inhibitory concentration of 65.3 µM against Mtb. CONCLUSION: Our study reinforced the importance of 2-nitroimidazole and 1H-1,2,3-triazole nuclei in antimicrobial activity. In addition, derivative 5b proved to be the most promising, presenting important activity against Tc and Mtb and could be used as a starting point for the development of new agents against these diseases.


Assuntos
Mycobacterium tuberculosis , Nitroimidazóis , Trypanosoma cruzi , Tuberculose Resistente a Múltiplos Medicamentos , Antituberculosos/química , Antituberculosos/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Nitroimidazóis/farmacologia
18.
Beilstein J Org Chem ; 17: 2260-2269, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621389

RESUMO

The enzyme tyrosine kinase BCR-Abl-1 is the main molecular target in the treatment of chronic myeloid leukemia and can be competitively inhibited by tyrosine kinase inhibitors such as imatinib. New potential competitive inhibitors were synthesized using the (phenylamino)pyrimidine-pyridine (PAPP) group as a pharmacophoric fragment, and these compounds were biologically evaluated. The synthesis of twelve new compounds was performed in three steps and assisted by microwave irradiation in a 1,3-dipolar cycloaddition to obtain 1,2,3-triazole derivatives substituted on carbon C-4 of the triazole nucleus. All compounds were evaluated for their inhibitory activities against a chronic myeloid leukemia cell line (K562) that expresses the enzyme tyrosine kinase BCR-Abl-1 and against healthy cells (WSS-1) to observe their selectivity. Three compounds showed promising results, with IC50 values between 1.0 and 7.3 µM, and were subjected to molecular docking studies. The results suggest that such compounds can interact at the same binding site as imatinib, probably sharing a competitive inhibition mechanism. One compound showed the greatest interaction affinity for BCR-Abl-1 in the docking studies.

19.
Int J Parasitol Drugs Drug Resist ; 17: 150-155, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34637981

RESUMO

Human malaria continues to be a public health problem and an important cause of morbidity and mortality in the world. Malaria control is achieved through both individual protection against mosquito bites and drug treatment, which is hampered by the spread of Plasmodium falciparum resistance to most antimalarials, including artemisinin derivatives. One of the key pharmacological strategies for controlling malaria is to block transmission of the parasites to their mosquito vectors. Following this rational, MEFAS, a synthetic hybrid salt derived from artesunate (AS) and mefloquine has been previously reported for its activity against asexual P. falciparum parasites in vitro, in addition to a pronounced reduction in the viability of mature gametocytes. Herein, MEFAS was tested against asexual forms of Plasmodium vivax and for its ability to block malaria transmission in Anopheles darlingi mosquitoes in a membrane feeding assay using P. vivax field isolates. MEFAS demonstrated high potency, with a IC50 of 6.5 nM against asexual forms of P. vivax. At 50 µM, MEFAS completely blocked oocyst formation in mosquitoes, regardless of the oocyst number in the control group. At lower doses, MEFAS reduced oocyst prevalence by greater than 20%. At equivalent doses, AS irregularly reduced oocyst formation and caused only slight inhibition of mosquito infections. These results highlight the potential of MEFAS as a novel transmission-blocking molecule, as well as its high blood schizonticidal activity against P. vivax and P. falciparum field isolates, representing a starting point for further development of a new drug with dual antimalarial activity.


Assuntos
Antimaláricos , Malária Falciparum , Malária Vivax , Malária , Animais , Antimaláricos/farmacologia , Artesunato , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/prevenção & controle , Malária Vivax/tratamento farmacológico , Malária Vivax/prevenção & controle , Mefloquina/farmacologia , Plasmodium falciparum , Plasmodium vivax
20.
Curr Top Med Chem ; 21(23): 2072-2100, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34477523

RESUMO

Infectious diseases are among the leading causes of death worldwide, especially in developing countries. The historical lack of interest of the pharmaceutical industry in developing new drugs against many of these diseases, such as tuberculosis, leishmaniasis, Chagas disease, sleeping sickness, and fungal infections, has left millions of individuals dependent on old treatments that are often ineffective and present different adverse effects. In this sense, new substances against these diseases must be identified. A class of substances that has stood out in the search for new drugs against these diseases is azole derivatives. Within this class, the 3-nitro-1,2,4-triazole nucleus has attracted increasing interest due to its potential, specifically when compared to the 1,2,4-triazole nucleus without the presence of the nitro group, and also in relation to the 2-nitroimidazole nucleus, showing greater potency and selectivity against different etiological agents. This is even more relevant considering that 3-nitro-1,2,4-triazolic substances can promote their activity through different mechanisms of action, such as the inhibition of ergosterol biosynthesis and also via activation by the nitroreductase enzyme, which can avoid the development of cross-resistance. Therefore, in this review, the medicinal chemistry of nitrotriazoles is discussed through the analysis of their potential in terms of biological activity against the etiological agents of several diseases, such as Chagas disease, sleeping sickness and leishmaniasis, caused by kinetoplastid parasites, tuberculosis, caused by the mycobacteria Mycobacterium tuberculosis, and against different species of pathogenic fungi. In addition, aspects related to enzymatic activities, molecular modeling and organic synthesis of these substances are also addressed.


Assuntos
Química Farmacêutica , Doenças Transmissíveis , Triazóis , Animais , Humanos , Doença de Chagas/tratamento farmacológico , Doenças Transmissíveis/tratamento farmacológico , Leishmaniose/tratamento farmacológico , Micoses/tratamento farmacológico , Triazóis/química , Triazóis/farmacologia , Triazóis/uso terapêutico , Tripanossomíase Africana/tratamento farmacológico , Tuberculose/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...